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Goal of the talk

. . Q . .
o Partitions with at most r parts — dominant weights of sl,.

o Fix integers r, e, w and consider
Wiew = Q(Pr,e,w) C Xt (sl,), (1)

where P, ., is the set of partitions of e-weight w with at most r parts.

® Question: What does W, . ., look like as a lattice subset of the dominant
chamber?
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Motivation from representation theory

@ Blocks of Hecke algebras of type A are classified by e—cores and e—weights.

@ The decomposition numbers dy , of Hecke algebras are indexed by partitions
in the same block.

@ Parabolic Kazhdan—Lusztig polynomials n, , are indexed by dominant
weights.

@ One has dy , = no(\).()-
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e—cores and e—weight

Let e >2 and A = (Ay,...,A,) be a partition. We associate to A an e—abacus
with e runners and r beads.

Let A =(4,3,2,2,1) and e = 3. The corresponding e—abacus with 5 beads is

@ e—core. A partition is an e—core if, on its e—abacus, no bead can be moved
upward along its runner.

o e—weight. The e-weight we()) is the total number of upward bead moves
required to reach the e—core.
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Dominant weights in sl,

sl, is the Lie algebra of r x r complex matrices with trace zero, with Lie bracket
[x, y] = xy — yx.

The weight lattice of sl, has basis A1, ..., A,_1, the fundamental weights. A
weight is dominant if all coefficients in this basis are non—negative.

For sl3, the dominant weights form the lattice X*(sl3) shown below:
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From partitions to dominant weights

Fix r > 2. Write P[r] for partitions with at most r parts.

@ For A= (A1,...,Ar) € P[r], the corresponding dominant weight of sl, is
r—1
Q) = (N — A1 + DA (2)

i=1

Fix e>2and w > 0. Let P, ., be the set of partitions with at most r parts
and e—weight w.

@ Define
Wr,e,w = Q(Pr,e,w) C X+(5[r)~ (3)
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Example: W50,

(r,e,w) =(3,10,1)

(r,e,w) = (3,10, 3) (r,e,w) = (3,10, 4) (r,e,w) = (3,10,5)
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Example: W3 103
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Case w = 0: simplices

Theorem (Simplicial structure for e—cores)

Fix integers e > r > 0. Then W, ¢0 = U, ., Wi,e0(n). If p is a composition of r
of length j, then W, . o(u) is the set of lattice points of a (j — 1)—-dimensional
simplex of side length e — j.
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Case w = 0: simplices

Example

When (r,e,w) = (3,10,0), we have

Wieo =W eo(l,1,1)UW, c0(2,1) U W, c0(1,2) U W, c0(3), and these sets
look as follows:

M pattern
e (3)
(2,1)
® (1,2
® (111
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Wr,e,w(,u)

The composition jt = (fi1, ..., f1j) corresponds to placing p; beads on the i-th
runner out of the chosen j runners.

For (r,e,w) = (3,10,0), the sets W, . 0(3), W, e0(2,1), W, c0(1,2) and
W, e0(1,1,1) correspond to the following abaci:

0 1 2 4 5 7 8 9

6
I 0 1 2 3 4 5 6 7 8 9
6

I
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Corollary (lattice points in one simplex)

If 1 has length j, then

#Wooal) = (571 @

Corollary (total size of W, )

e+r—2
|Wr,e,0|—( P =il ) (5)

If r < e, then

@ For each j, there are (J’j) compositions of r of length j.

> ()6

and applying Vandermonde identity.

@ Summing
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w > 0: reusing the same simplices

Set-up for general w

For each composition = (p, . . ., ;) of r, define W, . (1) as the subset of
W, e,w coming from e—cores of type ;1 and e-weight w.

Theorem (Simplicial decomposition for all w)

Fix e>rand w € N.

(a) The sets W, ¢ (1) for distinct p are pairwise disjoint.

(b) Each W, ¢ w(p) is a disjoint union of copies of W, ¢ o(x).

(c) The number of copies equals A(y; w), the number of j—partitions of w of
type L.
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Example: W3,

(r,e,w)=(3,10,0) (r,e,w)=(3,10,1) (r,e,w) =(3,10,2)

(r,e,w) =(3,10,3) (r,e,w) = (3,10, 4) (r,e,w) =(3,10,5)
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Example:

M pattern

e (3) °
(2,1)

e (1,2)

e (1,1,1)
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Abaci translation

Let (r, e, w) = (3,10, 3) and consider W, . »(2,1). The set of 2—partitions of
w = 3 of type (2,1) is

A= (310), A2 = (2,1]0), Az = (2[1), Aa = (L, 1[1), As = (1]2), Ae = (0]3).
They correspond to the following abaci:

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
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Counting formula for general w

For each composition p of r with length j:
@ There are A(u; w) copies of the simplex W, . o(p) inside W, ¢ (1)

e Each copy contributes (j:ll) lattice points.

Hence

W)l = A w) (571, (6)

j—1
and summing over all composition types p = r yields

W e—1
W] = 32 Ali) (o 0) @

@ For r = 3, this can be simplified further to a quadratic expression in e with
explicit coefficients depending on w.
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Indexing e—alcoves by weak compositions

@ Using the labels arising from W, . .,(1") (beads on all r runners), one obtains
a combinatorial labelling of certain bounded families of e—alcoves by
J—partitions of w of type (1").

@ A j—partition (A1|A2]---|Aj) of type (17) can be identified with the weak
composition (A1, [Az], ..., |Aj]).
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ine Weyl group action

For sl,, the corresponding affine Weyl group has generators sp, s1,...,5,—1. It acts
on the e—alcoves by reflections, and it also acts on the abacus:

S 50

LSt
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Thanks!
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