Stingray Pattern of Dominant Weights

Tao Qin

School of Mathematics and Statistics University of Sydney

Goal of the talk

- Partitions with at most r parts $\xrightarrow{\Omega}$ dominant weights of \mathfrak{sl}_r .
- Fix integers r, e, w and consider

$$W_{r,e,w} = \Omega(\mathcal{P}_{r,e,w}) \subset X^+(\mathfrak{sl}_r), \tag{1}$$

where $\mathcal{P}_{r.e.w}$ is the set of partitions of *e*-weight *w* with at most *r* parts.

• Question: What does $W_{r,e,w}$ look like as a lattice subset of the dominant chamber?

Motivation from representation theory

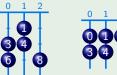
- Blocks of Hecke algebras of type A are classified by e-cores and e-weights.
- The decomposition numbers $d_{\lambda,\mu}$ of Hecke algebras are indexed by partitions in the same block.
- Parabolic Kazhdan–Lusztig polynomials $\mathfrak{n}_{x,y}$ are indexed by dominant weights.
- One has $d_{\lambda,\mu} = \mathfrak{n}_{\Omega(\lambda),\Omega(\mu)}$.

e-cores and e-weight

Let $e \geq 2$ and $\lambda = (\lambda_1, \dots, \lambda_r)$ be a partition. We associate to λ an e-abacus with e runners and r beads.

Example

Let $\lambda = (4, 3, 2, 2, 1)$ and e = 3. The corresponding e-abacus with 5 beads is



- e-core. A partition is an e-core if, on its e-abacus, no bead can be moved upward along its runner.
- e-weight. The e-weight $w_e(\lambda)$ is the total number of upward bead moves required to reach the e-core.

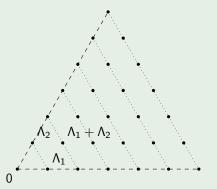
Dominant weights in \mathfrak{sl}_r

 \mathfrak{sl}_r is the Lie algebra of $r \times r$ complex matrices with trace zero, with Lie bracket [x,y]=xy-yx.

The weight lattice of \mathfrak{sl}_r has basis $\Lambda_1, \ldots, \Lambda_{r-1}$, the fundamental weights. A weight is dominant if all coefficients in this basis are non–negative.

Example

For \mathfrak{sl}_3 , the dominant weights form the lattice $X^+(\mathfrak{sl}_3)$ shown below:



From partitions to dominant weights

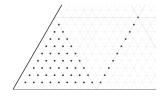
- Fix $r \ge 2$. Write $\mathcal{P}[r]$ for partitions with at most r parts.
- For $\lambda = (\lambda_1, \dots, \lambda_r) \in \mathcal{P}[r]$, the corresponding dominant weight of \mathfrak{sl}_r is

$$\Omega(\lambda) = \sum_{i=1}^{r-1} (\lambda_i - \lambda_{i+1} + 1) \Lambda_i.$$
 (2)

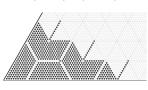
- Fix $e \ge 2$ and $w \ge 0$. Let $\mathcal{P}_{r,e,w}$ be the set of partitions with at most r parts and e-weight w.
- Define

$$W_{r,e,w} = \Omega(\mathcal{P}_{r,e,w}) \subset X^+(\mathfrak{sl}_r). \tag{3}$$

Example: $\overline{W_{3,10,w}}$

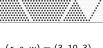


$$(r, e, w) = (3, 10, 0)$$



(r, e, w) = (3, 10, 1)

$$(r, e, w) = (3, 10, 2)$$

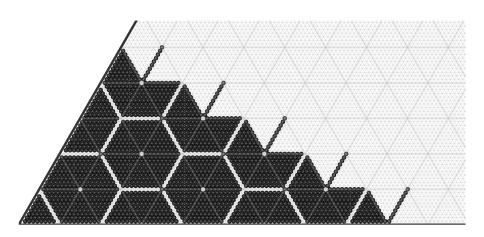


$$(r,e,w)=(3,10,3)$$

$$(r, e, w) = (3, 10, 4)$$

$$(r, e, w) = (3, 10, 5)$$

Example: $W_{3,10,8}$



Case w = 0: simplices

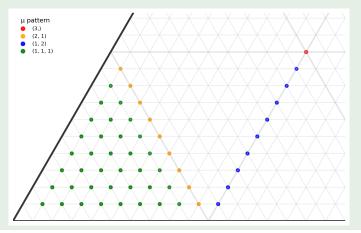
Theorem (Simplicial structure for *e*–cores)

Fix integers e>r>0. Then $W_{r,e,0}=\bigcup_{\mu\models r}W_{r,e,0}(\mu)$. If μ is a composition of r of length j, then $W_{r,e,0}(\mu)$ is the set of lattice points of a (j-1)-dimensional simplex of side length e-j.

Case w = 0: simplices

Example

When (r, e, w) = (3, 10, 0), we have $W_{r,e,0} = W_{r,e,0}(1,1,1) \cup W_{r,e,0}(2,1) \cup W_{r,e,0}(1,2) \cup W_{r,e,0}(3)$, and these sets look as follows:

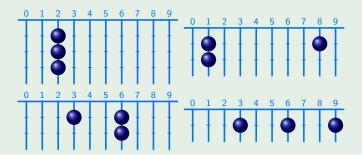


$W_{r,e,w}(\mu)$

The composition $\mu = (\mu_1, \dots, \mu_j)$ corresponds to placing μ_i beads on the *i*-th runner out of the chosen j runners.

Example

For (r, e, w) = (3, 10, 0), the sets $W_{r,e,0}(3)$, $W_{r,e,0}(2, 1)$, $W_{r,e,0}(1, 2)$ and $W_{r,e,0}(1, 1, 1)$ correspond to the following abaci:



Case w = 0

Corollary (lattice points in one simplex)

If μ has length j, then

$$\#W_{r,e,0}(\mu) = {e-1 \choose j-1}.$$
 (4)

Corollary (total size of $W_{r,e,0}$)

If r < e, then

$$|W_{r,e,0}| = {e+r-2 \choose r-1}.$$
 (5)

- For each j, there are $\binom{r-1}{i-1}$ compositions of r of length j.
- Summing

$$\sum_{i=1}^{r} {r-1 \choose j-1} {e-1 \choose j-1}$$

and applying Vandermonde identity.

w > 0: reusing the same simplices

Set-up for general w

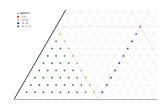
For each composition $\mu = (\mu_1, \dots, \mu_i)$ of r, define $W_{r,e,w}(\mu)$ as the subset of $W_{r,e,w}$ coming from e-cores of type μ and e-weight w.

Theorem (Simplicial decomposition for all w)

Fix e > r and $w \in \mathbb{N}$.

- (a) The sets $W_{r,e,w}(\mu)$ for distinct μ are pairwise disjoint.
- (b) Each $W_{r,e,w}(\mu)$ is a disjoint union of copies of $W_{r,e,0}(\mu)$.
- (c) The number of copies equals $A(\mu; w)$, the number of j-partitions of w of type μ .

Example: $W_{3,e,w}$



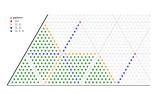
$$(r, e, w) = (3, 10, 0)$$

$$(r, e, w) = (3, 10, 3)$$

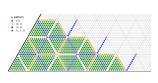
$$(r, e, w) = (3, 10, 1)$$



$$(r, e, w) = (3, 10, 4)$$

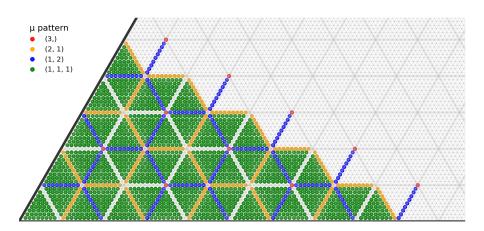


$$(r, e, w) = (3, 10, 2)$$



$$(r, e, w) = (3, 10, 5)$$

Example: $\overline{W_{3,10,8}}$

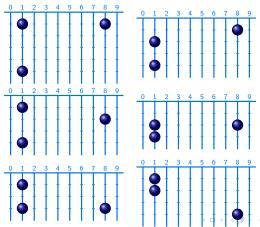


Abaci translation

Let (r, e, w) = (3, 10, 3) and consider $W_{r,e,w}(2,1)$. The set of 2-partitions of w = 3 of type (2,1) is

$$\lambda_1 = (3|\emptyset), \ \lambda_2 = (2,1|\emptyset), \ \lambda_3 = (2|1), \ \lambda_4 = (1,1|1), \ \lambda_5 = (1|2), \ \lambda_6 = (\emptyset|3).$$

They correspond to the following abaci:



Counting formula for general w

For each composition μ of r with length j:

- There are $A(\mu; w)$ copies of the simplex $W_{r,e,0}(\mu)$ inside $W_{r,e,w}(\mu)$.
- Each copy contributes $\binom{e-1}{i-1}$ lattice points.

Hence

$$|W_{r,e,w}(\mu)| = A(\mu; w) {e-1 \choose j-1},$$
(6)

and summing over all composition types $\mu \models r$ yields

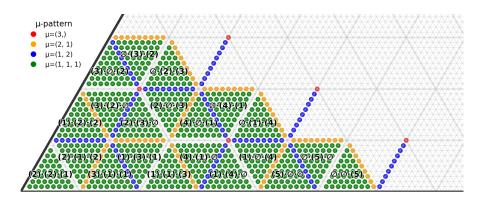
$$|W_{r,e,w}| = \sum_{\mu \models r} A(\mu; w) \binom{e-1}{\ell(\mu) - 1}. \tag{7}$$

• For r = 3, this can be simplified further to a quadratic expression in e with explicit coefficients depending on w.

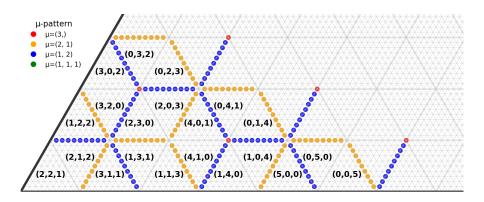
Indexing e-alcoves by weak compositions

- Using the labels arising from $W_{r,e,w}(1^r)$ (beads on all r runners), one obtains a combinatorial labelling of certain bounded families of e-alcoves by j-partitions of w of type (1^r) .
- A *j*-partition $(\lambda_1|\lambda_2|\cdots|\lambda_j)$ of type (1^r) can be identified with the weak composition $(|\lambda_1|, |\lambda_2|, \ldots, |\lambda_j|)$.

(r, e, w) = (3, 10, 5)

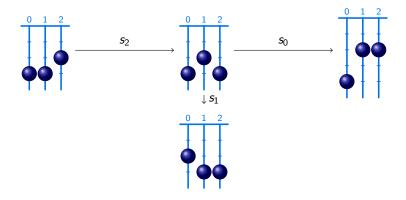


(r, e, w) = (3, 10, 5)



Affine Weyl group action

For \mathfrak{sl}_r , the corresponding affine Weyl group has generators $s_0, s_1, \ldots, s_{r-1}$. It acts on the e-alcoves by reflections, and it also acts on the abacus:



Thanks!

